Что такое АСУ: аббревиатура и её расшифровка, характеристики, назначение системы

Где применяется и что это такое асу

Функционирование любого предприятия невозможно без отлаженной управленческой деятельности. Для этой цели предусмотрено существование специального набора инструментов, объединенных общим назначением. Предлагаем разобраться, что такое АСУ, что означает эта аббревиатура и какова ее роль в организации производства.

Суть понятия

Начнем с главного – что такое АСУ? Термин предполагает следующую расшифровку: автоматизированные системы управления. Сюда входит база технических процессов и комплексов, научных методологий и мероприятий организационного характера.

Расшифровка позволяет раскрыть назначение АСУ. Важность комплекса заключается в способности обеспечить руководство деятельность предприятия с позиции оптимальности. При этом объектами для управления в комплексе выступают не только сложные технические процессы. Внимание также акцентируется на трудовом коллективе, имеющем общую цель деятельности.

Это интересно! Кто такой оператор ЭВМ и что это за профессия

Основная задача АСУ в целом заключается в ускорении производственного или технологического процесса. За счет автоматизации повышается эффективность выполнения, это достигается посредством функционального делегирования на компьютерное обеспечение.

Структурные элементы

Структурная схема АСУ позволяет выделить следующие элементы:

  1. Компоненты основной части. Состоят из информационного и математического обеспечения, включают в себя техническую часть.
  2. Компоненты функциональной части. Заключаются в функциях управленческого характера, дополняются взаимосвязанным программным комплексом.

Согласно структурному делению АСУ подразделяются на:

  • масштабные (или элементарные),
  • сложные.

Классификация автоматизированных систем управления по объектам управленческого процесса (или АСУО) включает следующие виды:

  • АСУТП. Расшифровывается как автоматизированная система управления техническим/технологическим процессом. Задача – управление сложными механизмами, машинами, техническими объектами, аппаратами.
  • АСОУ. Означает автоматизированную систему организационного управления. Задача – контроль функционирования и трудового взаимодействия сотрудников в едином коллективе.
  • АСУП. Расшифровывается как автоматизированная система управления предприятием.
  • ОАСУ. Аббревиатура обозначает отраслевую автоматизированную систему управления.

Важно! Кроме АСУО, существуют ФАС (или функциональные автоматизированные системы). Один из вариантов их применения – проектирование показателей по материально-техническому обеспечению.

В зависимости от применения АСУ в различных сферах выделяют следующие способы информационной передачи:

  • посредством документооборота;
  • за счет физических сигналов.

В рамках автоматизированных выделяют САУ. Под ней понимается система автоматического управления. Ее отличительная черта – способность непродолжительного функционирования без человеческого вмешательства.

В основном САУ применяются для отдельного управления негабаритными объектами.

Это интересно! Что такое прикладная информатика: кем можно работать после учебы

В зависимости от используемых сигналов САУ подразделяются на следующие виды:

  • Непрерывная (или аналоговая). Действие входных сигналов отмечается непрерывным характером на протяжении всего промежутка функционирования комплекса.
  • Дискретная (или импульсная). Действию сигналов на входе присущ прерывистый характер воздействия.

Принципы

Функционирование АСУ характеризуется комплексом принципов.

Первоначально принципы действия АСУ сформулировал и описал Глушков В.М. Среди основополагающих принято выделять принципы:

  • Новых задач. Первоочередное значение – решение принципиально новых задач управленческого характера. Механизация управленческой системы не является назначением АСУ. Перечень задач варьируется в зависимости от объекта управления. Задача при управлении промышленной отраслью – синхронизированное действие структурных элементов, планирование последующей деятельности и прогнозирование перспектив.
  • Системного подхода. Синергетический (или системный) подход применяется не только к анализируемому объекту, но и к управленческим процессам. Синергетическому анализу подвергаются технические, экономические, организационные моменты. Посредством систематизации достигается оптимизация производственных и экономических показателей.
  • Первого руководителя. Решение всех вопросов зависит от главного руководителя объекта (директора предприятия или министра). В его компетенцию входит разработка, согласование требований к анализируемому комплексу, внедрение практических предложений в производственном процессе.
  • Непрерывного развития. Главное требование к программному и математическому обеспечению – непрерывность развития комплекса. Заключается в способности корректировать или видоизменять процессы без прекращения производственного процесса;
  • Единства информационной базы. Исключается дублирование данных нецелесообразного характера. Предполагается непрерывное накопление и информационное обновление на носителях автоматического порядка. Введение и обработка вновь поступающих данных производится в кратчайшие сроки.
  • Комплексности задач и рабочих программ. В основе программных и технических действий лежит принцип их взаимосвязи. Неприемлемо рассмотрение процессов в качестве самостоятельных единиц. Решение задач по отдельности приведет к нивелированию производственной эффективности.
  • Типовой разработки. Требование к автоматизированной системе – универсальность для максимально возможного количества задач. Акцентируется внимание на востребованности комплекса заказчиками.

Основные характеристики

Чтобы лучше разобраться, что означает это понятие, необходимо рассмотреть характеристики АСУ.

Для автоматизированных систем характерны следующие характеристики:

Первая группа – информационные. Представлены в виде совокупности информации на машинных носителях. Информационная база необходима для стабильного системного функционирования. Информационный комплекс состоит из оперативного, производного и генерального секторов.

Задача генерального сектора – объединение полученных данных. Задача производного сектора – отражение специфики объекта, функциональных особенностей. Задача оперативного сектора – текущая информационная обработка, получение промежуточных данных и результатов.

Это интересно! Как стать it специалистом и кто это такой

Следующая группа характеристик – технические. Включают технические средства с образованием технической базы. Назначение технических средств – сбор, информационное накопление и последующая обработка с возможностью ее представления и передачи. Основные элементы – электронно-вычислительная техника, гарантирующая информационный сбор и обработку внутрисистемных данных.

Одна из способностей технической базы – моделирование процессов производства и построение управленческих предложений. Техника подразделяется на информационно-расчетную и учетно-регулирующую.

Задача информационно-расчетного оборудования – решение моментов по централизованному объектному управлению. Задача учетно-регулирующего оборудования – сбор данных от управленческих объектов и информационная обработка первичного характера с дальнейшей отправкой ее в информационно-расчетный сектор для получения данных директивного значения.

Комплекс оборудования

Оборудование АСУ включает в своем составе следующие элементы:

  • модули ввода-вывода;
  • контроллеры;
  • измерители;
  • датчики;
  • панели оператора;
  • источники питания;
  • нормализаторы сигналов.

Кроме оборудования промышленного значения используется программное обеспечение. К данному комплексу относятся:

  • инструментальные системы для программирования контроллеров;
  • SCADA системы;
  • утилиты по оптимизации работы с оборудованием.

Обратите внимание! В зависимости от сферы применения оборудование АСУ отмечается уникальными характеристиками.

Сферы применения

Автоматизированные системы нашли применение в различных производственных отраслях.

Применение АСУ отмечается в следующих сферах:

  • машиностроение;
  • нефте- и газодобыча;
  • металлообработка;
  • промышленность;
  • электроэнергетика;
  • сфера ЖКХ;
  • автоматизация зданий;
  • контроль и диспетчеризация.

Процессы управления в применяемых АСУ проявляются через их функции, а именно:

  • Управленческую автоматизацию технологического процесса. Основную роль играет контроллер. Происходит оптимизация деятельности элементов, снижение энергетических и топливных затрат, улучшение производственных показателей.
  • Информационный сбор, фиксацию, обработку, выдачу результатов и данных. Отражается состояние процесса и комплекса оборудования. Информационное накопление обеспечивается датчиками. Полученные данные оформляются в мнемосхематическом виде.
  • Диагностирование и фиксацию отклонений или аварийных состояний. Экстремальная ситуация порождает сигнал для автоматического устранения нарушений, позволяет предотвратить масштабный характер аварии.
  • Получение информации в числовом или графическом виде оператором. Информация выводится на экране в табличном, схематическом, графическом виде. Существует возможность распечатки полученных данных.
  • Автоматическое управление или за счет действий оператора – фиксацию команд оператора и их последующее сохранение в базе данных. Обеспечивает установление причины аварии. Гарантирует формирование выводов для предупреждения схожих ситуаций.
  • Информационную защиту многоуровневого характера. Основана на шифровании в виде паролей. Существует ограничение к информационному доступу. Требование для работы с данными – высшее техническое образование или руководящий уровень.

Полезное видео

Подведем итоги

Автоматизированные системы управления обеспечивают оптимизацию процессов и повышение их эффективности. Анализу подвергаются не только процессы, но и трудовые коллективы. Для оптимального функционирования АСУ предполагается непрерывность взаимодействия элементов и систематическое информационное обновление.

Назначение и принцип действия АСУ ТП

Назначение АСУ ТП состоит в поддержании установленных режимов технологического процесса за счет контроля и изменения технологических параметров, выдачи команд на исполнительные механизмы и визуального отображения данных о производственном процессе и состоянии технологического оборудования. В функции АСУ ТП входит предупреждение аварийных ситуаций, анализ контролируемых значений, стабилизация режимных параметров и технологических показателей. Автоматизация помогает в достижении основных целей политики предприятия в вопросах экономики и качества.

АСУ ТП получила широкое распространение в таких отраслях, как: аграрная промышленность, нефтегазовый комплекс, машиностроение, электроэнергетика, горнодобывающий производственный комплекс, металлообработка, пищевая промышленность и др. Автоматизируются гидромеханические, массообменные, тепловые процессы; процессы очистки, фильтрации, переработки, разделения, измельчения, хранения, отгрузки, приемки, дозации, пуска и остановки, измерения и множество других. От состава АСУ ТП зависят потенциальные возможности системы, а также качество функционирования автоматизированного объекта.

Назначение АСУ ТП:

  • повышение эффективности работы оборудования,
  • обеспечение удобства управления технологическими процессами,
  • контроль и мониторинг технологических параметров,
  • исключение рисков простоев, сбоев работы оборудования,
  • исчезновение ошибок персонала в процессе управления.

В состав автоматизированной системы входит не только совокупность технических средств и программного обеспечения. Работа АСУ ТП невозможна без таких компонентов, как: информационное, математическое, организационное, эргономическое и метрологическое обеспечение. Несмотря на то, что автоматизация освобождает человека от необходимости выполнять большинство функций контроля, стабилизации и управления, именно оперативный персонал (технологи, инженеры, диспетчеры, машинисты, операторы, аппаратчики) следит за надлежащей работой приборов и автоматических устройств и контролирует технологические параметры.

К аппаратным средствам АСУ ТП относят: операторские станции и серверы системы, сети, счетчики, измерительные преобразователи, сигнализаторы, автоматизированная система диспетчерского управления, контроллеры, датчики, модули цифрового интерфейса, исполнительные механизмы. Программные средства – это SCADA-системы, системы сбора данных, системы оперативного диспетчерского управления, операционные системы реального времени, средства исполнения технологических программ, специальное программное обеспечение. АСУ ТП предназначена для решения сложных управленческих проблем, повышения гибкости управляемого процесса и качества управления производственным объектом.

Принцип действия и структура АСУ ТП

Принцип действия АСУ ТП основан на измерении параметров технологического процесса с помощью интеллектуальных средств измерения и последующем управлении технологическим процессом. На нижнем или полевом уровне АСУ ТП расположены датчики, полевое оборудование, исполнительные механизмы. С датчиков, которые фиксируют контролируемые параметры, поступает сигнал на промышленные контроллеры. ПЛК (программируемые логические контроллеры) относят к среднему уровню АСУ ТП, именно здесь выполняются задачи автоматического регулирования, логико-командного управления, пуска/остановки оборудования и машин, аварийной защиты и отключения. С контроллеров информация передается на верхний уровень управления объектом – к диспетчеру. Верхний уровень АСУ ТП содержит базу серверов, инженерных и операторских (рабочих) станций.

  1. Управление и контроль,
  2. Анализ и планирование,
  3. Сбор, учет, хранение данных,
  4. Автоматическая защита,
  5. Мониторинг и регулирование.

В свою очередь, диспетчер ведет постоянное наблюдение за процессом производства и управляет работой агрегатов в дистанционном режиме. Также на верхнем уровне формируется отчетность, обрабатывается и архивируется информация на сервере системы. Все данные, поступающие на операторские станции, отображаются в режиме реального времени на экране сотрудника. Числовые и графические данные представляются в виде удобной мнемосхемы объекта управления. В зависимости от полученных данных, контроллер системы вырабатывает соответствующие сигналы управления для исполнительных механизмов. Кроме этого, контроллер различает выход заданных параметров за предельные значения, сигнализируя об отказах оборудования, каких-либо отклонениях процесса, а в некоторых случаях блокирует работу установки для исключения аварии.

С внедрением АСУ ТП совершенствуются методы планирования, противоаварийной защиты и контроля, поэтому предприятию удается достигнуть высоких качественных показателей технологических процессов. Автоматизированная система создает необходимые условия для наиболее эффективного и экономичного использования ресурсов производства, роста производительности труда, снижения затрат, повышения конкурентоспособности и получения максимальной прибыли. Внедрение АСУ ТП обеспечивает увеличение выхода выпускаемой продукции, стабилизацию производственных показателей, снижение материальных затрат, поддержание рациональных и безопасных технологических режимов, улучшение качественных показателей продукта.

Заказать разработку АСУ ТП

Заказать разработку АСУ ТП любой сложности вы можете в специализированной компании ООО «Олайсис». Специалисты нашей компании имеют опыт разработки АСУ ТП как для одной установки, так и для целого производственного комплекса, в том числе на территориально-распределенных объектах. Выполняем весь цикл работ: от технического задания до ввода в эксплуатацию, гарантируя надежность и отказоустойчивость готовой системы автоматизации. В разработке АСУ ТП мы стремимся учитывать все особенности объекта и обеспечивать систему развитым инструментарием. Наши системы приносят высокий экономический эффект и в краткие сроки окупают затраты владельцев. Опыт реализации проектов для самых разных отраслей промышленности позволяет нам выполнять разработку и внедрение широкофункциональных АСУ ТП в разумные сроки.

Читайте также:  Как стать археологом: где учиться, куда поступать и как работать

Качественное проведение всего комплекса работ по разработке интегрированных систем комплексной автоматизации, выбор надежных технических и программных средств, наличие необходимых интеллектуальных и технологических ресурсов, внедрение современных производственных и конструкторских решений – это ключевые составляющие эффективности систем ООО «Олайсис». Также в нашей компании заказывают отдельные работы по внедрению систем автоматизации: проектирование, изготовление и сборку шкафов автоматики, программирование ПЛК, шеф-монтаж, поставку высоконадежных средств контроля и управления от производителей Siemens, Schne > Заказать проект

© ALLICS – опытная и уважаемая российская IT компания, 2019 г.
Политика конфиденциальности
Все права защищены.

Что такое АСУ: аббревиатура и её расшифровка, характеристики, назначение системы

В общем случае, систему управления можно рассматривать в виде совокупности взаимосвязанных управленческих процессов и объектов. Обобщенной целью автоматизации управления является повышение эффективности использования потенциальных возможностей объекта управления. Таким образом, можно выделить ряд целей:

  1. Предоставление лицу, принимающему решение (ЛПР) релевантных данных для принятия решений
  2. Ускорение выполнения отдельных операций по сбору и обработке данных
  3. Снижение количества решений, которые должно принимать ЛПР
  4. Повышение уровня контроля и исполнительской дисциплины
  5. Повышение оперативности управления
  6. Снижение затрат ЛПР на выполнение вспомогательных процессов
  7. Повышение степени обоснованности принимаемых решений

Жизненный цикл АС

Стандарт ГОСТ 34.601-90 предусматривает следующие стадии и этапы создания автоматизированной системы:

  1. Формирование требований к АС
    1. Обследование объекта и обоснование необходимости создания АС
    2. Формирование требований пользователя к АС
    3. Оформление отчета о выполнении работ и заявки на разработку АС
  2. Разработка концепции АС
    1. Изучение объекта
    2. Проведение необходимых научно-исследовательских работ
    3. Разработка вариантов концепции АС и выбор варианта концепции АС, удовлетворяющего требованиям пользователей
    4. Оформление отчета о проделанной работе
  3. Техническое задание
    1. Разработка и утверждение технического задания на создание АС
  4. Эскизный проект
    1. Разработка предварительных проектных решений по системе и ее частям
    2. Разработка документации на АС и ее части
  5. Технический проект
    1. Разработка проектных решений по системе и ее частям
    2. Разработка документации на АС и ее части
    3. Разработка и оформление документации на поставку комплектующих изделий
    4. Разработка заданий на проектирование в смежных частях проекта
  6. Рабочая документация
    1. Разработка рабочей документации на АС и ее части
    2. Разработка и адаптация программ
  7. Ввод в действие
    1. Подготовка объекта автоматизации
    2. Подготовка персонала
    3. Комплектация АС поставляемыми изделиями (программными и техническими средствами, программно-техническими комплексами, информационными изделиями)
    4. Строительно-монтажные работы
    5. Пусконаладочные работы
    6. Проведение предварительных испытаний
    7. Проведение опытной эксплуатации
    8. Проведение приемочных испытаний
  8. Сопровождение АС.
    1. Выполнение работ в соответствии с гарантийными обязательствами
    2. Послегарантийное обслуживание

Эскизный, технический проекты и рабочая документация — это последовательное построение все более точных проектных решений. Допускается исключать стадию «Эскизный проект» и отдельные этапы работ на всех стадиях, объединять стадии «Технический проект» и «Рабочая документация» в «Технорабочий проект», параллельно выполнять различные этапы и работы, включать дополнительные.

Данный стандарт не вполне подходит для проведения разработок в настоящее время: многие процессы отражены недостаточно, а некоторые положения устарели.

Состав АСУ

В состав АСУ входят следующие виды обеспечений: информационное, программное, техническое, организационное, метрологическое, правовое и лингвистическое. [5]

Основные классификационные признаки

Основными классификационными признаками [5] , определяющими вид АСУ, являются:

  • сфера функционирования объекта управления (промышленность, строительство, транспорт, сельское хозяйство, непромышленная сфера и т.д.)
  • вид управляемого процесса (технологический, организационный, экономический и т.д.);
  • уровень в системе государственного управления, включения управление народным хозяйством в соответствии с действующими схемами управления отраслями (для промышленности: отрасль (министерство), всесоюзное объединение, всесоюзное промышленное объединение, научно-производственное объединение, предприятие (организация), производство, цех, участок, технологический агрегат).

Функции АСУ

Функции АСУ [5] устанавливают в техническом задании на создание конкретной АСУ на основе анализа целей управления, заданных ресурсов для их достижения, ожидаемого эффекта от автоматизации и в соответствии со стандартами, распространяющимися на данный вид АСУ. Каждая функция АСУ реализуется совокупностью комплексов задач, отдельных задач и операций. Функции АСУ в общем случае включают в себя следующие элементы (действия):

  • планирование и (или) прогнозирование;
  • учет, контроль, анализ;
  • координацию и (или) регулирование.

Необходимый состав элементов выбирают в зависимости от вида конкретной АСУ. Функции АСУ можно объединять в подсистемы по функциональному и другим признакам.

Функции при формировании управляющих воздействий

  • Функции обработки информации (вычислительные функции) – осуществляют учет, контроль, хранение, поиск, отображение, тиражирование, преобразование формы информации;
  • Функции обмена (передачи) информации – связаны с доведением выработанных управляющих воздействий до ОУ и обменом информацией с ЛПР;
  • Группа функций принятия решения (преобразование содержания информации) – создание новой информации в ходе анализа, прогнозирования или оперативного управления объектом

Классы структур АСУ

В сфере промышленного производства с позиций управления можно выделить следующие основные классы струк­тур систем управления: децентрализованную, централизованную, централизованную рассредоточенную и иерархическую. [6]

Децентрализованная структура

Построение си­стемы с такой структурой эффективно при автоматизации техно­логически независимых объектов управления по материальным, энергетическим, информационным и другим ресурсам. Такая система представляет собой совокупность нескольких независи­мых систем со своей информационной и алгоритмической базой.

Для выработки управляющего воздействия на каждый объект управления необходима инфор­мация о состоянии только этого объекта.

Централизованная структура

Централизованная структура осуществляет реа­лизацию всех процессов уп­равления объектами в едином органе управления, который осуществляет сбор и обработку информации об управляемых объектах и на основе их анали­за в соответствии с критериями системы вырабатывает управ­ляющие сигналы. Появление этого класса структур связано с увеличением числа контроли­руемых, регулируемых и уп­равляемых параметров и, как правило, с территориальной рассредоточенностью объекта управления.

Достоинствами централизованной структуры являются достаточно простая реализация процессов информационного взаимодей­ствия; принципиальная возможность оптимального управления системой в целом; достаточно легкая коррекция оперативно изменяемых входных параметров; возможность достижения максимальной эксплуатационной эффективности при минимальной избы­точности технических средств управления.

Недостатки централизованной структуры следующие: необхо­димость высокой надежности и производительности технических средств управления для достижения приемлемого качества упра­вления; высокая суммарная протяженность каналов связи при наличии территориальной рассредоточенности объектов упра­вления.

Централизованная рассредоточенная структура

Основная особенность данной структуры — сохранение принципа централизованного управления, т.е. выработка управляющих воздействий на каждый объект управления на основе информации о состояниях всей совокупности объектов управления. Некоторые функциональные устройства системы управления являются об­щими для всех каналов системы и с помощью коммутаторов под­ключаются к индивидуальным устройствам канала, образуя замкнутый контур управления.

Алгоритм управления в этом случае состоит из совокупности взаимосвязанных алгоритмов управления объектами, которые реализуются совокупностью взаимно связанных органов упра­вления. В процессе функционирования каждый управляющий орган производит прием и обработку соответствующей информа­ции, а также выдачу управляющих сигналов на подчиненные объекты. Для реализации функций управления каждый локаль­ный орган по мере необходимости вступает в процесс информа­ционного взаимодействия с другими органами управления. До­стоинства такой структуры: снижение требований, к производи­тельности и надежности каждого центра обработки и управления без ущерба для качества управления; снижение суммарной про­тяженности каналов связи.

Недостатки системы в следующем: усложнение информацион­ных процессов в системе управления из-за необходимости обмена данными между центрами обработки и управления, а также корректировка хранимой информации; избыточность техниче­ских средств, предназначенных для обработки информации; сложность синхронизации процессов обмена информацией.

Иерархическая структура

С ростом числа задач управления в сложных системах значительно увеличивается объем переработанной информации и повышается сложность алгоритмов управления. В результате осуществлять управление централизо­ванно невозможно, так как имеет место несоответствие между сложностью управляемого объекта и способностью любого упра­вляющего органа получать и перерабатывать информацию.

Кроме того, в таких системах можно выделить, следующие, группы задач, каждая из которых характеризуется соответствующими требованиями по времени реакции на события, происхо­дящие в управляемом процессе:

задачи сбора данных с объекта управления и прямого цифрового управления (время реакции , секунды, доли секунды);

задачи экстремального управления, связанные с расчётами желаемых параметров управляемого процесса и требуемых значений уставок регуляторов, с логиче­скими задачами пуска и остановки агрегатов и др. (время реак­ции — секунды, минуты);

задачи оптимизации и адаптивного управления процессами, технико-экономические задачи (время реакции — несколько секунд);

информационные задачи для адми­нистративного управления, задачи диспетчеризации и координа­ции в масштабах цеха, предприятия, задачи планирования и др. (время реакции — часы).

Очевидно, что иерархия задач управления приводит к необхо­димости создания иерархической системы средств управления. Такое разделение, позволяя справиться с информационными трудностями для каждого местного органа управления, порождает необходимость согласования принимаемых этими органами реше­ний, т. е. создания над ними нового управляющего органа. На каждом уровне должно быть обеспечено максимальное соот­ветствие характеристик технических средств заданному классу задач.

Кроме того, многие производственные системы имеют соб­ственную иерархию, возникающую под влиянием объективных тенденций научно-технического прогресса, концентрации и спе­циализации производства, способствующих повышению эффектив­ности общественного производства. Чаще всего иерархическая структура объекта управления не совпадает с иерархией системы управления. Следовательно, по мере роста сложности систем выстраивается иерархическая пирамида управления. Управляе­мые процессы в сложном объекте управления требуют своевремен­ного формирования правильных решений, которые приводили бы к поставленным целям, принимались бы своевременно, были бы взаимно согласованы. Каждое такое решение требует постановки соответствующей задачи управления. Их совокупность образует иерархию задач управления, которая в ряде случаев значительно сложнее иерархии объекта управления.

Виды АСУ

  • Автоматизированная система управления технологическим процессом или АСУ ТП — решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте
  • Автоматизированная система управления производством (АСУ П) — решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса. Для решения этих задач применяются MIS и MES-системы, а также LIMS-системы.
    • Автоматизированная система управления уличным освещением («АСУ УО») — предназначена для организации автоматизации централизованного управления уличным освещением.
    • Автоматизированная система управления наружного освещения («АСУНО») — предназначена для организации автоматизации централизованного управления наружным освещением.
    • Автоматизированная система управления дорожным движением или АСУ ДД — предназначена для управления транспортных средств и пешеходных потоков на дорожной сети города или автомагистрали
  • Автоматизированная система управления предприятием или АСУП — Для решения этих задач применяются MRP,MRP II и ERP-системы. В случае, если предприятием является учебное заведение, применяются системы управления обучением.
  • «Система управления гостиницей». Наряду с этим названием употребляется PMS Property Management System
  • «Автоматизированная система управления операционным риском» – это программное обеспечение, содержащее комплекс средств, необходимых для решения задач управления операционными рисками предприятий: от сбора данных до предоставления отчетности и построения прогнозов.

Назначение АСУ

8. Назначение АСУ

Данная АСУ предназначена для:

1) повышения конкурентоспособности предприятия;

2) повышения объёма выпускаемой продукции;

3) повышения качества выпускаемой продукции, тем самым повышая спрос на неё;

4) экономии сырья, энергоресурсов и сокращение количества обслуживающего персонала

Экономический эффект от внедрения данной системы определяют следующие составляющие:

–предприятие, имея объективную и оперативную информацию о количестве остатков муки, а также о свободных объемах в силосах, может более успешно строить политику закупки сырья;

–объективный подсчет количества израсходованной муки в соотношении с количеством произведенной продукции позволяет более точно подсчитывать себестоимость единицы продукции, а также выявлять непроизводственные потери;

–ряд функций системы дает возможность оператору БХМ более рационально производить загрузку силосов, высвобождая дополнительные объемы и не опасаясь при этом аварийной ситуации переполнения силосов;

–сводится до минимума перерасход дорогих сортов муки путем более точного выдерживания процентного соотношения компонентов смеси;

–разнообразная аварийная сигнализация дает возможность оператору вовремя отреагировать на ситуации, которые могут повлечь за собой потерю сырья или простой оборудования.

Система контроля и учета предназначена для автоматического контроля запасов, учета прихода и расхода муки в емкостях в реальном масштабе времени на хлебозаводах. Применение системы возможно для расходных силосов муки других типов.

Читайте также:  Владимиро-Суздальское княжество: географическое положение, развитие, культура

1) Автоматический контроль запасов муки в емкостях

2) Долговременный автоматический учет операций прихода и расхода муки на производство по емкостям

3) Отслеживание изменения объемов муки в силосах

4) Деление муки из одного муковоза в несколько силосов

5) Определение количества откачанной муки

6) Определение количества закачанной муки

7) Автоматическое дозирование отпуска муки на производство

8) Регулирование закачивания муки

9) Регулирование откачивания муки

10) Регулирование скоростей

11) Формирование общей базы данных склада бестарного хранения муки

Оператор может наблюдать в реальном времени и контролировать:

– время начала операций;

– количество муки в емкостях;

– изменение веса муки в результате операций “Прием” и “Дозирование”;

– сбои в работе системы.

10. Диаграммы UML

Диаграмма вариантов использования

Диаграммы вариантов использования

Данный вид диаграмм играет основную роль в моделировании поведения системы, подсистемы или класса. Она показывает множество прецедентов, актеров и отношения между ними. Эти диаграммы облегчают понимание системы, подсистемы или класса, представляя взгляд извне на то, что данные элементы могут использовать в соответствующем контексте.

На данной диаграмме моделируются требования к системе, указывается то, что разрабатываемая система должна делать, независимо от того, как она должна это делать. Система представляется как черный ящик, т. е. мы наблюдаем за реакцией системы на событие, но ничего о ее внутреннем устройстве неизвестно. Сущности внутри системы отвечают за реализацию поведения, которое ожидают сущности, находящиеся снаружи.

Расширение внутри прецедента указывает условие, которое приводит к взаимодействиям, отличным от описанных в главном успешном сценарии, и устанавливает, в чем состоят эти общения. Прецеденты описывают, как люди взаимодействуют с системой.

Диаграмма вариантов использования

Диаграмма классов и пакетов

Удобны в больших по размерам системах для представления картины зависимостей между основными элементами системы. Такие диаграммы хорошо соответствуют общепринятым программным структурам. Диаграммы пакетов представляют группирующий механизм времени компиляции и позволяют показать высокоуровневую организацию программного продукта.

Это логические модели, отображающие базовую структуру системы. Эти диаграммы показывают классы, интерфейсы, объекты и кооперации, а также их отношения. Диаграммы классов соответствуют статическому виду системы с точки зрения проектирования. Они включают активные классы, которые соответствуют статическому виду системы с точки зрения процессов. Диаграммы классов составляют фундамент UML, и, поэтому их применение является условием обеспечения адекватности моделирования. Обеспечение их должно быть в виде ключевых аспектов (абстракций). Их должно быть немного, он должны использоваться чаще и не включать старых моделей. Диаграммы классов, которые строятся из концептуальных перспектив, помогают при построении точного словаря предметной области.

Диаграммы состояний описывают динамическое поведение системы или ее объектов. Диаграмму состояний используют для классов со сложным внутренним циклом.

Диаграмма состояний показывает автомат, содержащий состояния, переходы, события и действия. Диаграммы такого рода относятся к динамическому виду системы и особенно важны при моделировании поведения интерфейса, класса или кооперации. Особое внимание в них уделяется порядку возникновения событий, связанных с объектом.

Далее представлена диаграмма, которая содержит 8 состояний, два из которых (начальное и конечное) являются псевдосостояниями. Достоинством рассмотренной диаграммы состояний является возможность визуализировать на одном рабочем листе модели процесс поведения рассматриваемой системы в целом. Полная модель системы управления процессом шлюзования содержит единственную диаграмму состояний, описывающая реализацию всех специфицированных вариантов использования (типичный ход событий)

На рисунке изображёна диаграмма состояний процесса учета муки, которая содержит состояния системы, переходы и действия.

Диаграммы компонентов отражают физическое применение базы данных, в том числе система управления базой данных, экстенты и разделы базы данных, а также приложения и интерфейсы, используемые для доступа к базе данных.

Показывают множество объектов, связи между ними и сообщения, которые они посылают или получают. Такие диаграммы относят к динамическому виду системы. Они отражают структурную организацию объектов посылающих или отправляющих сообщения. Применительно к проблеме решения моделирования процесса шлюзования диаграмма кооперации оказывается необходимым представлением модели и позволяет представить различные типы структурных отношений (ассоциации, композиции, агрегации) между взаимодействующими объектами. При этом диаграмма кооперации не содержит ни временных особенностей передачи сообщений, ни особенностей жизненного цикла участвующих в данной кооперации объектов.

С их помощью оценивают размещение элементов , поэтому в случае любого нетривиального развертывания они могут оказаться очень полезными.

Главными элементами диаграммы являются узлы, связанные информационными путями. Узел (node) – это то, что может содержать программное обеспечение. Узлы бывают двух типов. Устройства (device) – это физическое оборудование: компьютер или устройство, связанное с системой. Среда выполнения (execution environment) – это программное обеспечение, которое само может включать другое программное обеспечение, например, операционную систему или процессор – контейнер.

Узлы могут содержать артефакты (artifacts) которые являются физическим олицетворением программного обеспечения; обычно это файлы.

Артефакты можно изображать в виде прямоугольника классов или перечислять их имена в нутрии узла.

Артефакты часто являются реализацией компонентов. Это можно показать, задав значение метки в нутрии прямоугольников артефактов.

Информационные пути между узлами представляют обмен информацией в системе. Можно сопровождать эти пути информацией от используемых информационных протоколов.

На диаграммах развертывания отображается аппаратная конфигурация, на которой расположены базы данных; они показывают физическую конфигурацию программного обеспечения.

В рамках поставленной задачи были решены следующие проблемы:

– непрерывное измерение веса муки в режиме реального времени в каждом

из 15 силосов с визуализацией результатов измерений в графической и табличной форме на АРМ оператора и АРМ весовщика, подсчет общего веса муки по сортам;

– определение веса закачиваемой с автомуковоза муки с фиксацией времени начала закачки, подсчет закачанного веса по сортам;

определение веса откачиваемой муки из силоса на технологическую линию производства хлебобулочных и кондитерских изделий, подсчет откачанного веса по сортам, за смену, за сутки;

– контроль процентного соотношения разных сортов муки для приготовления смеси;

– формирование часовых, сменных и суточных табличных отчетов по приходу и расходу муки и передача их по локальной вычислительной сети на АРМ бухгалтерии и начальника цеха;

– сбор и отображение информации о заполнении производственных бункеров на мониторе АРМ оператора;

– контроль режимов закачки и откачки, контроль работы электродвигателей просеивателей (включен/выключен, авария);

– автоматическое и ручное управление электровибраторами силосов;

– управление процессом закачки муки из автомуковоза, предотвращение переполнения силоса мукой и закачка в силос веса, задаваемого оператором;

– учет готовой продукции, прошедшей упаковочные автоматы за смену.

Экономический эффект от внедрения данной системы определяют следующие составляющие:

– во-первых, предприятие, имея объективную и оперативную информацию о количестве остатков муки, а также о свободных объемах в силосах, может более успешно строить политику закупки сырья;

– во-вторых, объективный подсчет количества израсходованной муки в соотношении с количеством произведенной продукции позволяет более точно подсчитывать себестоимость единицы продукции, а также выявлять непроизводственные потери;

– в-третьих, ряд функций системы дает возможность оператору БХМ более рационально производить загрузку силосов, высвобождая дополнительные объемы и не опасаясь при этом аварийной ситуации переполнения силосов;

– в-четвертых, сводится до минимума перерасход дорогих сортов муки путем более точного выдерживания процентного соотношения компонентов смеси;

– в-пятых, разнообразная аварийная сигнализация дает возможность оператору вовремя отреагировать на ситуации, которые могут повлечь за собой потерю сырья или простой оборудования.

1. //СТА: Современные технологии автоматизации. /Изд-во “СТА-ПРЕСС”. – М., 2000 №3 стр. 54. www.cta.ru

2. Виролайнен А.М., Пугач Д.В. – Унифицированный язык моделирования (UML) 2007.;

Автоматизированные системы управления

Во второй половине 60-х и в 70-х годах получили развитие, так называемые, автоматизированные системы управления сложными объектами хозяйственной деятельности (предприятиями, энергосистемами, отраслями, сложными участками производства).

Автоматизированная система управления (АСУ) — это комплекс технических и. программных средств, совместно с организационными структурами (отдельными людьми или коллективом), обеспечивающий управление объектом (комплексом) в производственной, научной или общественной среде.

Цель разработки и внедрения АСУ — улучшениекачества управления системами различных видов, которое достигается

• своевременным предоставлением с помощью АСУ полной и достоверной информации управленческому персоналу для принятия решений;

• применением математических методов и моделей для принятия оптимальных решений.

Кроме того, внедрение АСУ обычно приводит к совершенствованию организационных структур и методов управления, более гибкой регламентации документооборота и процедур управления, упорядочению использования и создания нормативов, совершенствованию организации производства. АСУ различают по выполняемым функциям и возможностям информационного сервиса.

АСУ подразделяют по функциям:

• административно-организационные (например системы управления предприятием —АСУП), отраслевые системы управления — ОАСУ);

•технологические (автоматизированные системы управления технологическими процессами — АСУТП, в свою очередь подразделяющиеся на гибкие производственные системы — ГПС, системы контроля качества продукции — АСК, системы управления станками и линиями с числовым программным управлением);

• интегрированные, объединяющие функции перечисленных АСУ в различных комбинациях.

По возможностям информационного сервиса различают информационные АСУ, информационно-советующие, управляющие, самонастраивающнеся и самообучающиеся.

Первоначально АСУ строились на основе больших ЭВМ, имевшихся в вычислительных центрах крупных предприятий и организаций, и предполагали централизованную обработку информации. Помимо штата вычислительного центра обслуживание АСУ требовало создания специального подразделения численностью 200 -300 человек.

С появлением персональных компьютеров (ПК) и локальных вычислительных сетей (ЛВС) основой программно-аппаратного обеспечения АСУ стали распределенные информационные системы в сети ПК с архитектурой клиент — сервер. Такие системы позволяют вести учет событий и документальных форм по месту их возникновения, полностью автоматизировать передачу информации лицам, ответственным за принятие решений, создавая, таким образом, предпосылки для перехода к безбумажным комплексным технологиям управления, охватывающим все участки и подразделения предприятий и учреждений, весь производственный цикл.

Остановимся подробнее на структуре и функциях АСУП — наиболее распространенной и одновременно наиболее сложной разновидности АСУ. Управление производством — сложный процесс, требующий согласованной деятельности конструкторов, технологов, производственников, экономистов, специалистов по снабжению и сбыту.

В задачи управления входят

• разработка новых изделий;

• определение технологий изготовления изделий, проектирование оснастки;

• расчет пропускной способности оборудования, потребностей во всех видах ресурсов и производственной программы (плана);

• учет процессапроизводства, контроль за расходом комплектующих, сырья,ресурсов;

• расчет издержек производства и основных технико-экономических показателей (прибыли, рентабельности, себестоимости и др.).

Многие задачи, с которыми приходится сталкиваться АСУП, оказываются не поддающимися четкой формулировке, их решение основывается на неформальных факторах (например, социально-психологический климат, стиль руководства).

Цели внедрения любой АСУП:

• повышение эффективности принимаемых решений, особенно в части наилучшего использования всех видов ресурсов и сокращения потерь, достигаемых за счет обеспечения процесса принятия решений своевременной, полной и точной информацией, а также применения математических методов оптимизации;

• повышение производительности труда инженерно-технического и управленческого персонала (и его сокращение) за счет выполнения основного объема учетных и расчетных задач на ЭВМ.

Независимо от профиля АСУП они обладают однотипной функциональной структурой, рис. 6.8.

Рис. 6.8. Функциональная структура АСУП

Блок 1 — источники информации. В их роли могут выступать учетчики на различных участках производства, снабжения и сбыта, датчики на рабочих местах. Среди источников информации могут быть и внешние, такие как заказы на поставку продукции, нормативные акты, информация о ценах и другая документация.

Блок 2 выполняет предварительную обработку данных (проверку и уточнение), а затем передает ее в базу данных (блок 3) или непосредственно для последующей обработки и анализа(блок 4).

Блок 3 — база или банк данных. Данные являются результатом сбора информации, измерений характеристик объектов и процессов управления и в таких системах представляются в соответствии с определенными стандартами, образуя базу данных.

Блок 4 обработки и анализа информации — центральный блок АСУ. Он решает следующие задачи:

Читайте также:  История профессии учитель: где получить образование учителя начальных классов

• управления базой данных, в том числе обеспечения ее обновления и целостности, защиты от несанкционированного доступа;

• реагирования в непредвиденных и аварийных ситуациях, требующихбыстрогорешения;

• финансовых и учетно-бухгалтерских расчетов типа учета состояния фондов, финансовых и налоговых операций, расчета прибыли и рентабельности;

• составления календарных и оперативных планов, обеспечения заказов на материалы и комплектующие, контроля за выполнением договоров, управления сбытом готовой продукции;

• оценки и прогнозирования рынка, анализа работы трудового коллектива;

Важнейшее значение при обработке и анализе информации играют экономико-математические модели.

С точки зрения общей организации управления можно выделить следующие основные группы практически используемых экономико-математических моделей:

а) прогнозирования показателей развития предприятия или объединения;

б) оптимизации производственной программы предприятий или объединений;

в) распределения производственной программы по календарным периодам;

г) оптимизации направлений использования фонда развития предприятия или объединения;

д) оптимизации внутрипроизводственных транспортных потоков;

е) оптимизации использования отдельных видов ресурсов;

ж) оптимизации всякого рода нормативов ведения производственно-хозяйственной деятельности предприятий или объединений (партий деталей, норм запасов, размеров производственных резервов и т.д.);

з) разработки балансов производственно-хозяйственной деятельности.

Прогнозирование показателей развития предприятии или объединении осуществляется на основе пользования, главным образом, методов математической статистики. Последние позволяют ориентировочно определить тенденции изменения в перспективе показателей объема выпуска продукции, ее трудоемкости, величины затрат на производство и т.д. Как правило, для использования подобных методов необходимы статистические сведения о деятельности предприятия или объединения в прошлом.

Для определения тенденций развития производственно-хозяйственной деятельности на относительно близкую перспективу используют всякого рода экстраполяционные методы. Для этих целей на основе статистических сведений за прошедшие периоды рассчитывают соответствующие тенденциям развития того или иного аспекта производственно-хозяйственной деятельности регрессионные показатели, которые впоследствии применяют для оценки вероятных перспективных направлений.

Решение задач оптимизации производственной программы сводится к формированию таких номенклатур и объемов выписка продукции, которые в условиях наличных и выделяемых ресурсов, контрольных показателей потребности рынка и ведения деятельности обеспечивали бы оптимизацию принятого критерия. Для решения задач такого класса широко применяют разнообразные модели, базирующиеся на методах линейного программирования; при этом в качестве исходных данных требуются контрольные показатели по выпуску продукции, величина ресурсов (труда, машинного времени и материалов), а также нормы расхода исходных ресурсов на изготовление единицы продукции.

Распределение производственной программы по календарным периодам выражается в установлении номенклатуры и объема выпуска продукции в определенные месяцы и кварталы года. Основной задачей использования моделей такого класса является обеспечение стабильности производственно-хозяйственной деятельности объединения или предприятия в течение рассматриваемого периода.

Оптимизация направлений использования фонда развития производства характерна для объединений, включающих значительное число предприятий. Решение этой задачи позволяет определить рациональные пути использования фонда развития, обеспечивающие достижение оптимума какого-либо критерия (максимизации выпуска продукции, минимизации затрат на производство или максимизации прибыли и т.д.).

Оптимизация использования отдельных видов ресурсов может осуществляться на самых различных уровнях управления производством. К данному классу задач можно отнести оптимизацию раскроя материалов, образования разнообразных смесей, использования оборудования, распределения работ по линиям и т.д. Наиболее типичным представителем данного класса задач является задача образования смеси из разнообразных исходных компонентов с целью минимизации затрат на производство. Такие задачи имеют место практически во всех отраслях народного хозяйства (от нефтепереработки до производства мороженого).

Разработка балансов производственно-хозяйственной деятельности предприятий или объединений осуществляется на основе использования математического аппарата межотраслевого баланса производства и распределения продукции.

Блок 5 — система формирования выходной информации — обеспечивает подготовку (обычно в печатном виде) различного рода .сводок, справок, форм, технологических карт, чертежей и проектной документации, необходимых на производственных участках.

Автоматизированная система управления предприятием может состоять из следующих подсистем управления:

  • технической подготовки производства (конструкторской и технологической подготовки);
  • технико-экономического планирования;
  • бухгалтерского учета;
  • управления материально-техническим снабжением;
  • оперативного управления основным и вспомогательными производствами;
  • управления сбытом;
  • управления кадрами;
  • управления качеством;
  • управления финансами;
  • нормативного хозяйства и др.

Необходимо отметить, что реализация многих проектов АСУП в 70-е годы в нашей стране и во всем мире закончилась неудачей — эти системы «не прижились», оказались нежизнеспособными. В первую очередь, это вызвано тем, что в их концепции были заложены претензии на слишком высокую степень автоматизации управления, не оставляющую места для человека-руководителя. Кроме того, многие математические модели в АСУП были недостаточно точными и приводили к ошибкам.

Статьи к прочтению:

Автоматизированная система управления. Часть I

Похожие статьи:

Управление- важнейшая функция, без которой немыслима целенаправленная деятельность любого учреждения, предприятия, производственной отрасли, территории и…

Близкими по своей структуре и функциям к системам автоматизации научных исследований оказываются системы автоматизированного проектирования (САПР),…

Что такое система АСКУЭ, расшифровка термина, принцип работы АСКУЭ

В наш век автоматизации многих процессов оставить в стороне учет электроэнергии было бы неразумно, особенно, принимая в учет возможности современной технической базы. Внедрение подобных АС позволяет решить несколько задач, начиная с отслеживания баланса отдельно взятого потребителя и заканчивая принятием оперативного решения по изменению схемы электроснабжения. АСКУЭ — один из вариантов оптимального решения, предлагаем ознакомиться с основными тезисами.

Расшифровка аббревиатуры АСКУЭ

Название расшифровывается следующим образом:

  • А – автоматизированная.
  • С – система.
  • К – коммерческого.
  • У –учета.
  • Э –электроэнергии.

Иногда в название добавляется уточнение, описывающее характер комплекса — «информационно-измерительный». В таком случае аббревиатура преображается в АИИС КУЭ или АИСКУЭ.

Среди принятых сокращений можно встретить созвучные названия, например: АСДУЭ или АСТУЭ, но это совершенно другие комплексы автоматизации. Первая обеспечивает диспетчерское управление электроснабжением (ДУЭ), вторая хоть и является системой учета, но она несет в себе техническую, а не коммерческую составляющую. Подробно о различии между этими АС будет рассказано ниже.

Функции системы АСКУЭ и её назначение

Функциональное назначение данного комплекса — автоматизация процесса учета расхода электроэнергии для производства расчетов с ее потребителями. Помимо этого, АС на основе собранной информации формирует ряд отчетов, используемых при построении прогнозов потребления, расчетов стоимостных показателей и т.д.

Для выполнения перечисленных выше задач, необходимо выполнить следующие условия:

  • Каждый потребитель электроэнергии должен установить электронный прибор учета, оборудованный модулем для передачи сигналов (например, GSM модем). Электронный электросчетчик Энергомера, оборудованный интерфейсом для передачи данных.
  • Система связи, обеспечивающая передачу сигналов от приборов учета к центру их обработки. Один из элементов аппаратно-программного комплекса — шкаф АСКУЭ
  • В некоторых случаях, между центром приема и приборами учета устанавливаются специальные устройства – сумматоры, в которых «аккумулируются» данные перед тем, как они отправляются на сервер.

Принцип работы АСКУЭ

Алгоритм работы комплекса можно описать следующим образом:

  1. Электронные счетчики (Меркурий, Энергомера и т.д.) единовременно посылают сигнал. Частота (периодичность) передачи данных определяется АС.
  2. Данные архивируются в сумматорах, откуда идет их передача на сервер сбора и обработки. В незагруженной АС допускается передача напрямую серверу.
  3. Обработка данных АПК.

Собственно, данный алгоритм работы используется во всех АС энергоучета и контроля. Разница между автоматизированными комплексами заключается в их функциональном назначении, что отражается на анализе и обработке. Для примера приведем различия между коммерческими и техническими системами (АСТУЭ):

  • Алгоритм обработки данных, для расчета с потребителями, максимально оптимизирован под данную задачу.
  • данные, поступающие в коммерческий центр обработки, используется для формирования счетов потребителям, то есть, по сути это внутренний «продукт» энергокомпании.
  • Согласно законодательству, счетчики учета обязаны иметь все потребители, в то время, как система АСТУЭ внедряется для решения внутренних задач того или иного хозяйствующего объекта. Например, для мониторинга энергопотребления, анализа его структуры и выработки общей энергосберегающей программы и других задач АСУ ТП.

Для понимания структуры АС коммерческого учета, приведем несколько примеров схем реализации.

Схема АСКУЭ в СНТ

Как видите в данной схеме приборы учета, установленные у каждого потребителя, передают сигналы на сумматор, откуда осуществляется передача в центр обработки. Такая реализация практикуется в дачных поселках и садоводствах

Обратим внимание, что подобная АС может использоваться как для учета расхода электрики (электрического тока), так и холодной и горячей воды. Пример такой реализации в жилом доме показан ниже.

Схема системы АСКУЭ дома

Основные элементы АСКУЭ

Как видите, автоматизированная система учета включает в себя ряд элементов (подразделений), которые выполняют определенные задачи. Подобную структуру принято разделять на три уровня. Расскажем детально о назначении каждого из них.

Элементы первого уровня

К таковым относятся электронные приборы учета, у которых имеется специальный модуль, позволяющий отправлять сигналы в центр сбора. В России практикуется использование интерфейса RS-485, это стандарт асинхронной передачи данных, применяемый в системах автоматизации. Его упрощенная организация представлена ниже.

Организация интерфейса RS-485

Основной недостаток подобного устройства – ограничение количества приемо-передатчиков, их не может быть более 32. Выходом из этого может быть каскадирование системы, а именно установка сумматоров, «аккумулирующих» данные от различных источников. Изображение такого прибора показано на рисунке 7.

Рисунок 7. Устройство сбора и передачи данных (УСПД)

Обратим внимание, что разработка АС на базе интерфейса RS-485 велась в то время, когда использование GSM было экономически не обосновано. На текущий момент ситуация радикально изменилась.

Связующее звено (элементы второго уровня)

Данный уровень используется для организации транспортировки данных к центру обработки. На текущий момент большинством приборов учета используется интерфейс RS-485, несмотря на то, что данный способ является явно устаревшим. Сложившаяся ситуация вызвана инертностью структур, отвечающих за стандартизацию, что несколько притормаживает внедрение новой технической базы.

Центр обработки (завершающее звено)

Данный элемент представляет собой АПК, в который поступают и обрабатываются информационные сигналы. Его характеристики напрямую зависят от объема поступающих данных и наличия дополнительных функций системы. Исходя из этих технических условий, для комплекса АС подбираются компьютерные мощности и программное обеспечение.

О технических требованиях к системе

Поскольку надежность работы системы напрямую зависит от первого уровня, то основные требования предъявляются к приборам учета. Именно от их точность определяет достоверность данных.

Не менее важным показателем системы является допустимая погрешность при трансфере данных. Данный момент требует небольшого уточнения. Телеметрический выход прибора транслирует последовательность импульсов с частотой, соответствующей потребляемой мощности. Помехи и тепловые шумы могут вносить погрешность в такие данные, то есть влиять на отчет импульсов.

Чтобы избежать этого, информация передается в двоичном коде, высокий и низкий импеданс сигнала соответствует «1» и «0». Для проверки достоверности данных их определенная порция (как правило, байт) кодируется контрольной сумой.

Бытует мнение, что цифровая форма передачи защищена от погрешностей. Данное утверждение не является корректным, поскольку протокол передачи допускает определенную вероятность ошибки (необнаруженная ошибка). Собственно, данный недостаток, в той или иной мере, присущ любой системе передачи данных. Для уменьшения размера допустимой погрешности применяются специальные алгоритмы обработки.

Компании, занимающиеся разработкой АС, обязаны придерживаться типовых технических требований, разработанных ЕЭС Российской Федерации. В данных нормах указаны точностные характеристики информационного сигнала, класс точности приборов учета, рекомендуемое программное обеспечение, а также другие требования, необходимые для надежной работы системы. Соответственно, производители измерительных приборов, также должны учитывать принятые нормы.

Внедрение

Установка систем АСКУЭ производится по следующему алгоритму:

  • Создание рабочего проекта, где разрабатывается структура системы и ее отдельные уровни, составляется чертеж и другая сопутствующая конструкторская документация.
  • Выбирается система передачи данных, с учетом преимуществ, недостатков и возможностей технической реализации.
  • На основе проектной сметы приобретается необходимое оборудование.
  • Производится монтаж и настройка (наладка) АПК.
  • Осуществляется подбор состава обслуживающего персонала и, при необходимости его обучение.
  • Ввод системы в эксплуатацию.

Обратим внимание, что экономия на проекте, незамедлительно отразится на функциональности. Из-за недочетов могут расходиться данные с реальными показаниями счетчиков энергии, в результате использование такого комплекса будет не эффективным.

Ссылка на основную публикацию