Обмен веществ и энергии в клетке: синтез АТФ, метаболические процессы и этапы

Обмен веществ и энергии в клетке

Анаболизм и катаболизм

Обмен веществ или метаболизм – совокупность сложных химических реакций, происходящих в каждой клетке живого организма. Основное свойство обмена веществ и энергии – обеспечение взаимодействия внешней среды с организмом для поддержания жизни и нормального функционирования тканей и органов. Все жизненно необходимые вещества (вода, кислород, органические соединения) поступают из внешней среды. Без их доступа обмен веществ нарушается или прекращается, что приводит к гибели живого организма.

Метаболизм включает два тесно взаимосвязанных противоположных процесса:

  • катаболизм или диссимиляция;
  • анаболизм или ассимиляция.

Катаболизм или энергетический обмен – процесс распада сложных веществ (сахаров, жиров) на более простые. В результате образуется энергия в виде молекулы АТФ (аденозинтрифосфорная кислота или аденозинтрифосфат), которая является универсальным источником энергии. Часть образованных молекул АТФ участвует в синтезе различных веществ, часть – рассеивается в виде тепла.

Рис. 1. Формула АТФ.

Примеры катаболизма:

  • расщепление этанола;
  • гликолиз – превращение глюкозы в кислоту, а затем – в воду и углекислый газ;
  • внутриклеточное дыхание (окисление).

Анаболизм или пластический обмен включает сложные химические реакции, в результате которых образуются высокомолекулярные вещества, необходимые для постройки и обновления организма (белки, жиры, углеводы).

Анаболизм можно наблюдать в виде:

  • роста волос и ногтей;
  • образование мышц;
  • заживление ран, срастание костей и т.д.

Фотосинтез является анаболизмом, но вместо АТФ используется энергия солнечных лучей.

Рис. 2. Процесс фотосинтеза в клетке.

В результате катаболизма (распада) образуются простые вещества, которые могут соединяться при анаболизме (постройке) и вновь разрушаться при катаболизме с высвобождением АТФ. Хорошим примером являются жиры, которые образуются при ассимиляции, откладываются в тканях и расщепляются для получения энергии. Соотношение образованной и потраченной энергии называется энергетическим балансом. Анаболизм и катаболизм должны происходить параллельно без преобладания одного из процессов.

Этапы

Прежде чем пища превратится в энергию, она должна пройти долгий путь по желудочно-кишечному тракту, попасть в кровь и достигнуть каждой клетки, где начнётся метаболизм. Весь процесс делится на три стадии, которые описаны в таблице.

Этапы

Где происходит

Результат

Вещества, поступившие с пищей, расщепляются на молекулы и всасываются в кровь. Белки расщепляются до аминокислот, углеводы – до глюкозы, жиры – до жирных кислот и глицерина. Происходит незначительное выделение энергии

Органеллы (функциональные структуры) клеток

Химические реакции анаболизма и катаболизма. Происходит образование АТФ и синтез специфичных для определённых тканей белков, обмен жиров и углеводов

Образование и выведение конечных продуктов распада – воды и углекислого газа. Выведение происходит через почки, кишечник, лёгкие, потовые железы

Рис. 3. Схема обмена веществ.

На протяжении всего метаболизма задействованы катализаторы – ферменты, которые ускоряют синтез или распад. Ферменты действуют избирательно: каждый вид участвует в строго определённых реакциях. Например, амилаза помогает расщепить крахмал в ротовой полости.

Регуляцию обмена веществ осуществляет гипоталамус, где находятся центры теплообмена, ощущений голода, жажды, насыщения. Нейроны гипоталамуса реагируют на уровень глюкозы, изменение давления, температуры и т.д. В соответствии с полученной информацией гипоталамус корректирует метаболизм.

Что мы узнали?

Кратко узнали об основных стадиях и этапах метаболизма, взаимодействии и примерах катаболизма и анаболизма, о значении ферментов для метаболизма и центре контроля всех внутриклеточных процессов.

Обмен веществ и энергии в клетке: синтез АТФ, метаболические процессы и этапы

Обмен веществ (метаболизм) – это совокупность всех химических реакций, которые происходят в организме. Состоит из двух процессов:

  • Пластический обмен (анаболизм, ассимиляция, биосинтез) – это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Примеры: фотосинтез, синтез белка.
  • Энергетический обмен (катаболизм, диссимиляция, распад) – это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия, необходимая для жизнедеятельности. Примеры: гликолиз, переваривание пищи.

Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами, необходимыми для энергетического обмена. Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т.п.) энергетический обмен усиливается.

АТФ (аденозинтрифосфорная кислота) состоит из аденина, рибозы и трех остатков фосфорной кислоты, два из них присоединены макроэргическими связями, содержащими много энергии. АТФ – универсальное энергетическое вещество клетки.

  • При энергетическом обмене АТФ синтезируется (выделившаяся энергия запасается в АТФ).
  • При пластическом обмене АТФ распадается (энергия АТФ тратится на биосинтез).

Тесты

1. В процессе пластического обмена
А) более сложные углеводы синтезируются из менее сложных
Б) жиры превращаются в глицерин и жирные кислоты
В) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ
Г) происходит освобождение энергии и синтез АТФ

2. Пластический обмен в клетках животных не может происходить без энергетического, так как энергетический обмен обеспечивает клетку
А) ферментами
Б) молекулами белка
В) молекулами АТФ
Г) кислородом

3. Значение энергетического обмена в клеточном метаболизме состоит в том, что он обеспечивает реакции синтеза
А) ферментами
Б) витаминами
В) молекулами АТФ
Г) нуклеиновыми кислотами

4. В процессе энергетического обмена, в отличие от пластического, происходит
А) расходование энергии, заключенной в молекулах АТФ
Б) запасание энергии в макроэргических связях молекул АТФ
В) обеспечение клеток белками и липидами
Г) обеспечение клеток углеводами и нуклеиновыми кислотами

5. Энергия, используемая человеком в процессе жизнедеятельности, освобождается в клетках
А) при окислении органических веществ
Б) в процессе синтеза сложных органических веществ
В) при образовании органических веществ из неорганических
Г) при переносе питательных веществ кровью

6. Молекулы АТФ выполняют в клетке функцию
А) защитную
Б) каталитическую
В) аккумулятора энергии
Г) транспорта веществ

7. При умственной работе в клетках мозга человека усиливается
А) образование гликогена
Б) накопление инсулина
В) энергетический обмен
Г) пластический обмен

8. Пластический обмен в клетке характеризуется
А) распадом органических веществ с освобождением энергии
Б) образованием органических веществ с накоплением в них энергии
В) всасыванием питательных веществ в кровь
Г) перевариванием пищи с образованием растворимых веществ

9. Окисление органических веществ в организме человека происходит в
А) легочных пузырьках при дыхании
Б) клетках тела в процессе пластического обмена
В) процессе переваривания пищи в пищеварительном тракте
Г) клетках тела в процессе энергетического обмена

10) АТФ образуется в процессе
А) синтеза белков на рибосомах
Б) разложения крахмала с образованием глюкозы
В) окисления органических веществ в клетке
Г) фагоцитоза

11. Всю совокупность химических реакций в клетке называют
А) фотосинтезом
Б) хемосинтезом
В) брожением
Г) метаболизмом

12. В процессе пластического обмена в клетках синтезируются молекулы
А) белков
Б) воды
В) АТФ
Г) неорганических веществ

13. Все реакции синтеза органических веществ в клетке происходят с
А) освобождением энергии
Б) использованием энергии
В) расщеплением веществ
Г) образованием молекул АТФ

Читайте также:  Северная Европа: список стран, Зарубежная Европа и столицы европейских государств

14. В чем проявляется взаимосвязь пластического и энергетического обмена
А) пластический обмен поставляет органические вещества для энергетического
Б) энергетический обмен поставляет кислород для пластического
В) пластический обмен поставляет минеральные вещества для энергетического
Г) пластический обмен поставляет молекулы АТФ для энергетического

15. Каково значение дыхания в жизни грибов
А) способствует образованию органических веществ в теле гриба
Б) ускоряет процесс биосинтеза белка
В) способствует освобождению энергии и ее использованию на процессы жизнедеятельности
Г) обеспечивает поступление минеральных веществ из почвы

16. Организм человека получает необходимые для жизнедеятельности строительный материал и энергию в процессе
А) роста и развития
Б) транспорта веществ
В) обмена веществ
Г) выделения

17. У человека, растений, животных, грибов и большинства бактерий в процессе дыхания происходит
А) образование сложных органических веществ из неорганических
Б) окисление органических веществ и освобождение энергии
В) значительное увеличение массы тела и его размеров
Г) значительное уменьшение массы тела и изменение его размеров

18. При дыхании организм человека получает энергию за счет
А) окисления органических веществ
Б) расщепления минеральных веществ
В) превращения углеводов в жиры
Г) синтеза белков и жиров

19. Окисление органических веществ с освобождением энергии в клетке происходит в процессе
А) биосинтеза
Б) дыхания
В) выделения
Г) фотосинтеза

20. Какие вещества служат универсальными биологическими аккумуляторами энергии в клетке?
А) белки
Б) липиды
В) ДНК
Г) АТФ

21. Молекулы клеточных липидов окисляются в ходе
А) фотосинтеза
Б) гликолиза
В) биосинтеза белка
Г) энергетического обмена

22. Какие реакции обмена веществ в клетке сопровождаются затратами энергии?
А) подготовительного этапа энергетического обмена
Б) молочнокислого брожения
В) окисления органических веществ
Г) пластического обмена

23. В результате какого процесса окисляются липиды?
А) фагоцитоза
Б) энергетического обмена
В) фотосинтеза
Г) хемосинтеза

24. В результате какого процесса в организме бактерий освобождается энергия?
А) движения
Б) дыхания
В) размножения
Г) спорообразования

25. Клетки грибов во время интенсивного роста получают энергию в процессе
А) синтеза липидов
Б) синтеза углеводов
В) распада минеральных солей
Г) окисления органических веществ

26. В результате какого процесса в клетке синтезируются липиды?
А) диссимиляции
Б) биологического окисления
В) пластического обмена
Г) гликолиза

27. Какую функцию выполняют в клетке молекулы АТФ?
А) структурную
Б) транспортную
В) энергетическую
Г) репродуктивную

28. Энергия, необходимая для процессов жизнедеятельности человека, освобождается при
А) окислении органических веществ
Б) образовании ферментов
В) выделении гормонов в кровь
Г) синтезе белков на рибосомах

29. К пластическому обмену относят процесс
А) биосинтеза белка
Б) расщепления РНК
В) дыхания
Г) гликолиза

Обмен веществ и энергии в клетке: синтез АТФ, метаболические процессы и этапы

Видео YouTube

СТАДИИ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

Энергетический обмен (катаболизм, диссимиляция) — это процессы расщепления ве­ ществ с высвобождением энергии. Высвобожденная энергия преобразуется в энергию АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Энер­ге­ти­че­ский обмен – это со­во­куп­ность хи­ми­че­ских ре­ак­ций по­сте­пен­но­го рас­па­да ор­га­ни­че­ских со­еди­не­ний, со­про­вож­да­ю­щих­ся вы­сво­бож­де­ни­ем энер­гии, часть ко­то­рой рас­хо­ду­ет­ся на син­тез АТФ. Син­те­зи­ро­ван­ная АТФ ста­но­вит­ся уни­вер­саль­ным ис­точ­ни­ком энер­гии для жиз­не­де­я­тель­но­сти ор­га­низ­мов. Она об­ра­зу­ет­ся в ре­зуль­та­те ре­ак­ции фос­фо­ри­ли­ро­ва­ния – при­со­еди­не­ния остат­ков фос­фор­ной кис­ло­ты к мо­ле­ку­ле АДФ. На эту ре­ак­цию рас­хо­ду­ет­ся энер­гия, ко­то­рая затем на­кап­ли­ва­ет­ся в мак­ро­эр­ги­че­ских свя­зях мо­ле­ку­лы АТФ, при рас­па­де мо­ле­ку­лы АТФ или при ее гид­ро­ли­зе до АДФ клет­ка по­лу­ча­ет около 40 кДж энер­гии.

АТФ – по­сто­ян­ный ис­точ­ник энер­гии для клет­ки, она мо­биль­но может до­став­лять хи­ми­че­скую энер­гию в любую часть клет­ки. Когда клет­ке необ­хо­ди­ма энер­гия – до­ста­точ­но гид­ро­ли­зо­вать мо­ле­ку­лу АТФ. Энер­гия вы­де­ля­ет­ся в ре­зуль­та­те ре­ак­ции дис­си­ми­ля­ции (рас­щеп­ле­ния ор­га­ни­че­ских ве­ществ), в за­ви­си­мо­сти от спе­ци­фи­ки ор­га­низ­ма и усло­вий его оби­та­ния энер­ге­ти­че­ский обмен про­хо­дит в два или три этапа. Боль­шин­ство живых ор­га­низ­мов от­но­сят­ся к аэро­бам, ис­поль­зу­ю­щим для об­ме­на ве­ществ кис­ло­род, ко­то­рый по­сту­па­ет из окру­жа­ю­щей среды. Для аэро­бов энер­ге­ти­че­ский обмен про­хо­дит в три этапа:

В ор­га­низ­мах, ко­то­рые оби­та­ют в бес­кис­ло­род­ной среде и не нуж­да­ют­ся в кис­ло­ро­де для энер­ге­ти­че­ско­го об­ме­на – анаэ­ро­бах и аэро­бах, при недо­стат­ке кис­ло­ро­да про­хо­дят энер­ге­ти­че­ский обмен в два этапа:

Ко­ли­че­ство энер­гии, ко­то­рое вы­де­ля­ет­ся при двух­этап­ном ва­ри­ан­те на­мно­го мень­ше, чем в трех­этап­ном.

ЭТАПЫ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

Под­го­то­ви­тель­ный этап – во время него круп­ные пи­ще­вые по­ли­мер­ные мо­ле­ку­лы рас­па­да­ют­ся на более мел­кие фраг­мен­ты. В же­лу­доч­но-ки­шеч­ном трак­те мно­го­кле­точ­ных ор­га­низ­мов он осу­ществ­ля­ет­ся пи­ще­ва­ри­тель­ны­ми фер­мен­та­ми, у од­но­кле­точ­ных – фер­мен­та­ми ли­зо­сом. По­ли­са­ха­ри­ды рас­па­да­ют­ся на ди- и мо­но­са­ха­ри­ды, белки – до ами­но­кис­лот, жиры – до гли­це­ри­на и жир­ных кис­лот. В ходе этих пре­вра­ще­ний энер­гии вы­де­ля­ет­ся мало, она рас­се­и­ва­ет­ся в виде тепла, и АТФ не об­ра­зу­ет­ся. Об­ра­зу­ю­щи­е­ся в ходе под­го­то­ви­тель­но­го этапа со­еди­не­ния-мо­но­ме­ры могут участ­во­вать в ре­ак­ци­ях пла­сти­че­ско­го об­ме­на (в даль­ней­шем из них син­те­зи­ру­ют­ся ве­ще­ства, необ­хо­ди­мые для клет­ки) или под­вер­гать­ся даль­ней­ше­му рас­щеп­ле­нию с целью по­лу­че­ния энер­гии.

Боль­шин­ство кле­ток в первую оче­редь ис­поль­зу­ют уг­ле­во­ды, жиры оста­ют­ся в пер­вом ре­зер­ве и ис­поль­зу­ют­ся по окон­ча­ния за­па­са уг­ле­во­дов. Хотя есть и ис­клю­че­ния: в клет­ках ске­лет­ных мышц при на­ли­чии жир­ных кис­лот и глю­ко­зы пред­по­чте­ние от­да­ет­ся жир­ным кис­ло­там. Белки рас­хо­ду­ют­ся в по­след­нюю оче­редь, когда запас уг­ле­во­дов и жиров будет ис­чер­пан – при дли­тель­ном го­ло­да­нии.

Бес­кис­ло­род­ный этап (гли­ко­лиз) – про­ис­хо­дит в ци­то­плаз­ме кле­ток. Глав­ным ис­точ­ни­ком энер­гии в клет­ке яв­ля­ет­ся глю­ко­за. Ее бес­кис­ло­род­ное рас­щеп­ле­ние на­зы­ва­ют анаэ­роб­ным гли­ко­ли­зом. Он со­сто­ит из ряда по­сле­до­ва­тель­ных ре­ак­ций по пре­вра­ще­нию глю­ко­зы в лак­тат. Его при­сут­ствие в мыш­цах хо­ро­шо из­вест­но устав­шим спортс­ме­нам. Этот этап за­клю­ча­ет­ся в фер­мен­та­тив­ном рас­щеп­ле­нии ор­га­ни­че­ских ве­ществ, по­лу­чен­ных в ходе пер­во­го этапа. Так как глю­ко­за яв­ля­ет­ся наи­бо­лее до­ступ­ным суб­стра­том для клет­ки как про­дукт рас­щеп­ле­ния по­ли­са­ха­ри­дов, то вто­рой этап можно рас­смот­реть на при­ме­ре ее бес­кис­ло­род­но­го рас­щеп­ле­ния – гли­ко­ли­за (Рис. 1).

Рис. 1. Бес­кис­ло­род­ный этап

Гли­ко­лиз – мно­го­сту­пен­ча­тый про­цесс бес­кис­ло­род­но­го рас­щеп­ле­ния мо­ле­ку­лы глю­ко­зы, со­дер­жа­щей шесть ато­мов уг­ле­ро­да, до двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты (пи­ру­ват). Ре­ак­ция гли­ко­ли­за ка­та­ли­зи­ру­ет­ся мно­ги­ми фер­мен­та­ми и про­те­ка­ет в ци­то­плаз­ме клет­ки. В ходе гли­ко­ли­за при рас­щеп­ле­нии од­но­го моля глю­ко­зы вы­де­ля­ет­ся около 200 кДж энер­гии, 60 % ее рас­се­и­ва­ет­ся в виде тепла, 40 % – для син­те­зи­ро­ва­ния двух мо­ле­кул АТФ из двух мо­ле­кул АДФ. При на­ли­чии кис­ло­ро­да в среде пи­ро­ви­но­град­ная кис­ло­та из ци­то­плаз­мы пе­ре­хо­дит в ми­то­хон­дрии и участ­ву­ет в тре­тьем этапе энер­ге­ти­че­ско­го об­ме­на. Если кис­ло­ро­да в клет­ке нет, то пи­ро­ви­но­град­ная кис­ло­та пре­об­ра­зу­ет­ся в жи­вот­ных клет­ках или пре­вра­ща­ет­ся в мо­лоч­ную кис­ло­ту.

В мик­ро­ор­га­низ­мах, ко­то­рые су­ще­ству­ют без до­сту­па кис­ло­ро­да – по­лу­ча­ют энер­гию в про­цес­се бро­же­ния, на­чаль­ный этап ана­ло­ги­чен гли­ко­ли­зу: рас­пад глю­ко­зы до двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты, и далее она за­ви­сит от фер­мен­тов, ко­то­рые на­хо­дят­ся в клет­ке – пи­ро­ви­но­град­ная кис­ло­та может пре­об­ра­зо­вы­вать­ся в спирт, ук­сус­ную кис­ло­ту, про­пи­о­но­вую и мо­лоч­ную кис­ло­ту. В от­ли­чие от того, что про­ис­хо­дит в жи­вот­ных тка­нях, у мик­ро­ор­га­низ­мов этот про­цесс носит на­зва­ние мо­лоч­но­кис­ло­го бро­же­ния. Все про­дук­ты бро­же­ния ши­ро­ко ис­поль­зу­ют­ся в прак­ти­че­ской де­я­тель­но­сти че­ло­ве­ка: это вино, квас, пиво, спирт, кис­ло­мо­лоч­ные про­дук­ты. При бро­же­нии, так же как и при гли­ко­ли­зе, вы­де­ля­ет­ся всего две мо­ле­ку­лы АТФ.

Читайте также:  Карл Линней: краткая биография и научная деятельность, вклад в биологию и научные публикации

Кис­ло­род­ный этап стал воз­мо­жен после на­коп­ле­ния в ат­мо­сфе­ре до­ста­точ­но­го ко­ли­че­ства мо­ле­ку­ляр­но­го кис­ло­ро­да, он про­ис­хо­дит в ми­то­хон­дри­ях кле­ток. Он очень сло­жен по срав­не­нию с гли­ко­ли­зом, это про­цесс мно­го­ста­дий­ный и идет при уча­стии боль­шо­го ко­ли­че­ства фер­мен­тов. В ре­зуль­та­те тре­тье­го этапа энер­ге­ти­че­ско­го об­ме­на из двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты фор­ми­ру­ет­ся уг­ле­кис­лый газ, вода и 36 мо­ле­кул АТФ (Рис. 2).

Рис. 2. Ми­то­хон­дрия

Две мо­ле­ку­лы АТФ за­па­са­ют­ся в ходе бес­кис­ло­род­но­го рас­щеп­ле­ния мо­ле­ку­ла­ми глю­ко­зы, по­это­му сум­мар­ный энер­ге­ти­че­ский обмен в клет­ке в слу­чае рас­па­да глю­ко­зы можно пред­ста­вить как:

С 6 Н 12 О 6 + 6О 2 + 38АДФ + 38Н 3 РО 4 = 6СО 2 + 44Н 2 О + 38АТФ

В ре­зуль­та­те окис­ле­ния одной мо­ле­ку­лы глю­ко­зы ше­стью мо­ле­ку­ла­ми кис­ло­ро­да об­ра­зу­ет­ся шесть мо­ле­кул уг­ле­кис­ло­го газа и вы­де­ля­ет­ся трид­цать во­семь мо­ле­кул АТФ.

Мы видим, что в трех­этап­ном ва­ри­ан­те энер­ге­ти­че­ско­го об­ме­на вы­де­ля­ет­ся го­раз­до боль­ше энер­гии, чем в двух­этап­ном ва­ри­ан­те – 38 мо­ле­кул АТФ про­тив 2.

В отсутствие кислорода или при его недостатке про­ исходит брожение. Брожение является эволюционно бо­ лее ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку ко­ нечными продуктами брожения являются органические вещества, богатые энергией. Существует несколько видов брожения, названия которых определяются конечными продуктами: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода протекает молочнокислое брожение, в ходе которого пировиноградная кислота восстанавли­ вается до молочной кислоты. При этом восстановленные ранее коферменты НАДН расходу­ ются на восстановление пирувата:

Для многих микроорганизмов брожение является единственным способом ассимиля­ ции энергии. Большинство таких организмов живет в анаэробных условиях и погибает в присутствии кислорода, но есть и такие, которые нормально существуют и в присутствии кислорода, и без него. Например, дрожжевые грибы при спиртовом брожении окисляют пировиноградную кислоту до этилового спирта и оксида углерода (IV):

Энергетический обмен

Обмен веществ

Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза – диссимиляции и ассимиляции, постоянно протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться) количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.

Энергетический обмен

Энергетический обмен (диссимиляция – от лат. dissimilis ‒ несходный) – обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров, белков, углеводов, нуклеиновых кислот до простых веществ.

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Обсудим этапы энергетического обмена более подробно:

    Подготовительный этап

Осуществляется в ферментами, в результате действия которых, сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

Под действием ферментов белки расщепляются на аминокислоты, жиры – на глицерин и жирные кислоты, сложные углеводы – до простых сахаров.

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Кислородный этап (аэробный)

Этот этап доступен только для аэробов – организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на этапе гликолиза, синтезируется 18 молекул АТФ – в сумме с двух ПВК выход составляет 36 молекул АТФ.

Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

АТФ – аденозинтрифосфорная кислота

Трудно переоценить роль в клетке АТФ – универсального источника энергии. Молекула АТФ состоит из азотистого основания – аденина, углевода – рибозы и трех остатков фосфорной кислоты.

Между остатками фосфорной кислоты находятся макроэргические связи – ковалентные связи, которые гидролизуются с выделением большого количества энергии. Их принято обозначать типографическим знаком тильда “∽”.

АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота). Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:

  • АТФ + H2O = АДФ + H3PO4 + E
  • АДФ + H2O = АМФ + H3PO4 + E
  • АМФ + H2O = аденин + рибоза + H3PO4 + E
Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Химия, Биология, подготовка к ГИА и ЕГЭ

В о всех клетках живых организмов непрерывно идут процессы обмена веществ и энергии.

Это называется метаболизм.

Если рассмотреть этот процесс более детально, то это постоянные процессы образования и распада веществ и поглощения и выделения энергии.

Обмен веществ в клетке

Процесс синтеза веществ = пластический обмен = ассимиляция = анаболизм

Пластический обмен (анаболизм, или ассимиляция) – это совокупность физиолого-биохимических процессов, в ходе которых из простых органических и неорганических веществ образуются более сложные вещества. Пластический обмен протекает с затратой высокоорганизованной энергии (например, в виде АТФ)

Чтобы что-то построить, надо затратить энергию — этот процесс идет с поглощением энергии.

Тип организмаПример пластического обмена
Автотрофы
  • Фотосинтез ( у растений и некоторых бактерий)
  • Хемоситнез ( у бактерий)
Гетеротрофы
  • Синтез белка
  • синтез липидов и углеводов∗
  • Репликация ДНК
  • Синтез РНК

Глюконеогенез — это процесс синтеза глюкозы из неуглеводных соединений, например, из пирувата. Реакции глюконеогенеза у человека происходят в клетках печени, почек и эпителия тонкого кишечника.

Гликогеногенез — это процесс синтеза гликогена из глюкозы. Реакции гликогеногенеза осуществляются в клетках мышечной ткани и в клетках печени

Читайте также:  Система трёх миров, список государств третьего мира, отличительные черты этих стран по данным википедии

Синтез жирных кислот осуществляется в цитоплазме жировой ткани

Синтез нуклеотидов осуществляется в цитоплазме всех активных клеток организма

Процесс расщепления = энергетический обмен = диссимиляция = катаболизм

Энергетический обмен (катаболизм, или диссимиляция) – это совокупность физиолого-биохимических процессов, в ходе которых происходит окисление сложных органических веществ. В результате энергетического обмена образуются более простые органические или неорганические вещества, и выделяется высокоорганизованная энергия (например, в виде АТФ) .

В основном, это реакции окисления, происходят они в митохондриях, самый простой пример — дыхание. При дыхании сложные органические вещества расщепляются до простых, выделяется углекислый газ и энергия.

Вообще, эти два процесса взаимосвязаны и переходят один в другой. Суммарно уравнение метаболизма — обмена веществ в клетке — можно записать так:

катаболизм + анаболизм = обмен веществ в клетке = метаболизм

Энергетический обмен = Диссимиляция = Катаболизм

Этот процесс идет в несколько этапов и нам нужно рассмотреть как он проходит а различных организмах.

Организмов будет всего 2 — многоклеточный (человек, например) и одноклеточный (растительный и животный).

И запомните, сочетание букв АТФ (аденинтрифосфорная кислота) — означает “энергию”. Просто эта энергия заключена в молекуле.

Обмен веществ в клетке

Этапы диссимиляции:

1 этап — подготовительный

Давайте проследим путь пищи от начала и до конца… Итак, пища поступила в организм. А что у нас за пища? Точнее, из чего она состоит? Из белков, жиров и углеводов.

Пища начинает перевариваться.

В чем суть пищеварения? Очень просто: полимеры: белки, жиры и углеводы расщепляются до мономеров:

  • жиры → до глицерина и жирных кислот

Такое расщепление возможно с помощью ферментов (био-катализаторов)

  • у одноклеточных — в их “мини-желудочках” — лизосомах (пищеварительных вакуолях)

2 этап — бескислородный — гликолиз

Глюкоза, полученная в предыдущем этапе, превращается в пировиноградную кислоту (ПВК) и выделяется энергия (“+” — это выделение энергии, “-” — поглощение).

Происходит этот процесс уже в цитоплазме клеток (как много-, так и одноклеточных организмов).

3 этап — кислородный = Цикл Кребса + окислительное фосфорилирование

Здесь мы не будем детально разбирать цикл Кребса и фосфорилирование — это будет отдельная подробная тема в формате ЕГЭ…

Сама суть этого процесса в том, что в митохондриях (на кристах) ( а если митохондроий нет, то и процесс этот отсутствет, т.е. у анаэробов кислородного этапа нет) кислота превращается уже до конца: до CO2 (то, что мы выдыхаем) и H2O:

Общее уравнение диссимиляции:

Взаимосвязь пластического и энергетического обмена:

  • Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена.
  • Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т.п.) энергетический обмен усиливается.

Пластический и энергетический обмен – это сопряженные (взаимосвязанные) процессы.

Реакции метаболизма рано или поздно завершаются превращением всей исходной энергии в тепло.

Что такое метаболизм?

Метаболизм представляет собой высоко координированную и целенаправленную клеточную активность, обеспеченную участием многих взаимосвязанных ферментативных систем, и включает два неразрывных процесса анаболизм и катаболизм .

Он выполняет три специализированные функции:

  1. Энергетическая – снабжение клетки химической энергией,
  2. Пластическая – синтез макромолекул как строительных блоков,
  3. Специфическая – синтез и распад биомолекул, необходимых для выполнения специфических клеточных функций.

Анаболизм

Анаболизм – это биосинтез белков, полисахаридов, липидов, нуклеиновых кислот и других макромолекул из малых молекул-предшественников. Поскольку он сопровождается усложнением структуры, то требует затрат энергии. Источником такой энергии является энергия АТФ .

Цикл НАДФ-НАДФН

Также для биосинтеза некоторых веществ (жирные кислоты, холестерол) требуются богатые энергией атомы водорода – их источником является НАДФН. Молекулы НАДФН образуются в реакциях окисления глюкозо-6-фосфата в пентозосфатном пути или декарбоксилирования яблочной кислоты малик-ферментом. В реакциях анаболизма НАДФН передает свои атомы водорода на синтетические реакции и окисляется до НАДФ. Так формируется НАДФ-НАДФН –цикл.

Катаболизм

Катаболизм – расщепление и окисление сложных органических молекул до более простых конечных продуктов. Оно сопровождается высвобождением энергии, заключенной в сложной структуре веществ. Большая часть высвобожденной энергии рассеивается в виде тепла. Меньшая часть этой энергии “перехватывается” коферментами окислительных реакций НАД и ФАД , некоторая часть сразу используется для синтеза АТФ .

Атомы водорода, высвобождаемые в реакциях окисления веществ, в основном используются клеткой по двум направлениям:

  • на анаболические реакции в составе НАДФН (например, синтез жирных кислот и холестерина),
  • на образование АТФ в митохондриях при окислении НАДН и ФАДН 2 .

Весь катаболизм условно подразделяется на три этапа, включающие реакции общих и специфических путей.

Первый этап

Происходит в кишечнике (переваривание пищи) или в лизосомах (самообновление клеток) при расщеплении уже ненужных или лишних молекул. При этом освобождается около 1% энергии, заключенной в молекуле. Она рассеивается в виде тепла.

Второй этап

Вещества, образованные при внутриклеточном гидролизе или проникающие в клетку из крови, на втором этапе обычно превращаются

  • в пировиноградную кислоту (моносахариды в гликолизе),
  • в ацетил-SKoA, в пируват и другие кетокислоты (в катаболизме аминокислот),
  • в ацетил-SКоА (при β-окислении жирных кислот).

Локализация второго этапа – цитозоль и митохондрии. На этом этапе выделяется около 30% энергии, заключенной в молекуле, и при этом запасается около 13% от всей энергии вещества (или примерно 43% от выделенной на этом этапе энергии).

Схема общих и специфичных путей катаболизма
(более подробная схема представлена здесь)

Третий этап

Все реакции этого этапа идут в митохондриях. Ацетил-SКоА (и кетокислоты) включается в реакции цикла трикарбоновых кислот, где углероды веществ окисляются до углекислого газа. Выделенные атомы водорода соединяются с НАД и ФАД, восстанавливают их и после этого НАДН и ФАДН2 переносят водород в цепь ферментов дыхательной цепи, расположенную на внутренней мембране митохондрий. Сюда же отдают свои атомы водорода молекулы НАДН и ФАДН2, образованные на втором этапе (гликолиз, окисление жирных кислот и аминокислот). В третьем этапе выделяется до 70% всей энергии вещества. Из этого количества усваивается почти две трети (66%), что составляет около 46% от общей. Таким образом, из 100% энергии окисляемой молекулы клетка запасает больше половины – 59%.

Соотношение выделенной и запасенной энергии
при биологическом окислении

На внутренней мембране митохондрий в результате процесса под названием ” окислительное фосфорилирование ” образуется вода и главный продукт биологического окисления – АТФ.

Роль АТФ

Энергия, высвобождаемая в реакциях катаболизма, запасается в виде связей, называемых макроэргическими. Основной и универсальной молекулой, которая запасает энергию и при необходимости отдает ее, является АТФ .

Все молекулы АТФ в клетке непрерывно участвуют в каких-либо реакциях, постоянно расщепляются до АДФ и вновь регенерируют.

Существует три основных способа использования АТФ:

  • биосинтез веществ,
  • транспорт веществ через мембраны,
  • изменение формы клетки и ее движение.

Эти процессы вкупе с процессом образования АТФ получили название АТФ-цикл :

Ссылка на основную публикацию